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Abstract

We revisit the question of global regularity for the Patlak–Keller–Segel (PKS)
chemotaxis model. The classical 2D parabolic-elliptic model blows up for initial
mass M > 8π . We consider a more realistic scenario which takes into account
the flow of the ambient environment induced by harmonic potentials, and thus
retain the identical elliptic structure as in the original PKS. Surprisingly, we find
that already the simplest case of linear stationary vector field, Ax�, with large
enough amplitude A, prevents chemotactic blow-up. Specifically, the presence of
such an ambient fluid transport createswhatwe call a ‘fast splitting scenario’, which
competes with the focusing effect of aggregation so that ‘enough mass’ is pushed
away from concentration along the x1-axis, thus avoiding a finite time blow-up,
at least for M < 16π . Thus, the enhanced ambient flow doubles the amount of
allowable mass which evolve to global smooth solutions.
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1. Introduction

The Patlak–Keller–Segel (PKS)model describes the time evolution of colony of
bacteria with density n(x, t) subject to two competing mechanisms— aggregation
triggered by the concentration of chemo-attractant driven by velocity field u :=
∇(−�)−1n(·, t), and diffusion due to run-and-tumble effects,

nt + ∇ · (nu) = �n, u := ∇(−�)−1n.

We focus on the two-dimensional case where (−�)−1n takes the general form of
a fundamental solution together with an arbitrary harmonic function

(−�)−1n(x, t) = (K ∗ n)(x, t) + H(x, t), K (x) := − 1

2π
log |x |, �H(·, t) ≡ 0.

The resulting PKS equation then reads

∂n

∂t
+ ∇ · (n∇c) + b · ∇n = �n, c = K ∗ n, x = (x1, x2) ∈ R

2, (1.1)

subject to prescribed initial conditions n(x, 0) = n0(x). Here the divergence free
vector field b(·) represents the environment of a background fluid transported with
velocity b(x, t) := ∇H(x, t). When b ≡ 0, the system is the classical parabolic-
elliptic PKS equation modeling chemotaxis in a static environment [21,27]. We
recall the large literature on the static case b = 0, referring the interested reader
to the review [19] and the follow-up representative works [3–8,10–15,20,28,29].
It is well-known that the large-time behavior of the static case (1.1)b≡0 depends
on whether the initial total mass M := |n0|1 crosses the critical threshold of 8π :
the equation admits global smooth solution in the sub-critical case M < 8π and
it experiences a finite time blow-up if M > 8π [7] (when M = 8π , aggregation
and diffusion exactly balance each other and solutions with finite second moments
form Dirac mass as time approach infinity [8]).1

In this paper we study a more realistic scenario of the PKS model (1.1), where
we take into account an ambient environment due to the fluid transport by vector
field b(·, t). Surprisingly, we find that already the simplest case of linear stationary
vector field, b = A(−x1, x2), corresponding to H(x) = 1

2 A(x22 − x21 ), prevents
chemotactic blow-up forM < 16π .Aswe shall see, the presence of such an ambient
fluid transport creates what we call a ‘fast splitting scenario’ which competes with
the focusing effect of aggregation so that ‘enough mass’ is able to escape a finite
time blow-up, at least for M < 16π . This scenario is likely to be enhanced even
further when larger amount of mass can be transported by a more pronounced
ambient field b(x, t) = ∇H(·, t) � |x |q at |x | � 1.

We mention two other scenarios of non-static PKS with strong enough trans-
port preventing blow-up for M > 8π . In [23] the authors exploit the relaxation
enhancing of a vector field b with a large enough amplitude in order to enforce

1 We let |x | denote the �2-size of vector x and let | f |p denote the L p-norm of a vector
function f (·).
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Suppressing Chemotactic Blow-Up 953

global smooth solutions. Here regularity follows due to a mixing property over
T
2 and T

3. In [2] it was shown how to exploit the enhanced dissipation effect of
non-degenerate shear flow with large enough amplitude, [1], in order to suppress
the blow up in (1.1) on T

2,T3,T × R,T × R
2. It is worth mentioning that the

model (1.1) is one among many attempts to take into account the underlying fluid
transport effect, see, e.g. [16,18,24–26].

1.1. A Fast Splitting Scenario

Here, we exploit yet another mechanism that suppress the possible chemotactic
blow up of the equation (1.1), where the underlying fluid flow splits the population
of bacteria with density n exponentially fast, resulting in several isolated subgroups
with mass smaller than the critical 8π . In this manner, an initial total mass greater
than 8π is able to escape the finite-time concentration of Dirac mass. This provides
a first no blow-up scenario over R2, at least for M up to 16π .

We now fix the vector field driving a hyperbolic flow as the strain flow in [22]):

b(x) := A(−x1, x2). (1.2)

Our aim is to show that a large enough amplitude, A � 1, guarantees the global exis-
tence of solution of PKS (1.1) subject to initial massM < 16π . Intuitively, the large
enough amplitude A � 1 is required so that the ambient field A(−x1, x2) ‘pushes

away’ highly concentrated mass near the x1−axis, namely,
∫

|x2|�ε

n0(x)dx � 1.

With this we can state the main theorem of the paper.

Theorem 1.1. Consider the PKS equation (1.1), (1.2) subject to initial data, n0 ∈
Hs(s � 2) with total mass, M := |n0|1 < 16π , such that (1 + |x |2)n0 ∈ L1(R2)

and n0 log n0 ∈ L1(R2). Assume n0 is symmetric about the x1-axis, and that the
“y-component” of its center of mass in the upper half plane

y+(t) := 1

M+

∫
x2�0

n(x, t)x2dx, M+ :=
∫
x2�0

n(x, t)dx ≡ M

2
,

is not too close to the x1-axis in the sense that

y2+(0) >
2

M+
V+(0), V+(t) :=

∫
x2�0

n(x, t)|x2 − y+|2dx . (1.3)

Then there exists a large enough amplitude, A = A(M, y+(0), V+(0)), such that
the weak solution of (1.1), (1.2) exists for all time and the free energy

E[n](t) :=
∫ (

n log n − 1

2
cn − H(x)n(x, t)

)
dx, H(x) = A

2
(x22 − x21 ),

(1.4)

satisfies the dissipation relation

E[n](t) +
∫ t

0

∫
R2

n|∇ log n − ∇c − b|2dxds � E[n0]. (1.5)
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We conclude the introduction with a series of remarks.

Remark 1.1. (Why large enough stationary field prevents second-moment col-
lapse) Our main theorem extends the amount of critical mass, so that global reg-
ularity of (1.1), (1.3) prevails for M < 16π , provided A is large enough. To gain
further insight why large enough A will prevent blow-up, we recall that the blow
up phenomena in the static case, b ≡ 0 is deduced from the time evolution of the

secondmoment, V (t) :=
∫
R2

n(x, t)|x |2dx . Indeed, a straightforward computation

yields, V̇ (t) = 4M
(
1 − M

8π

)
< 0, which implies that the positive V (t) decreases

to zero in a finite time and hence rules out existence of global classical solutions
for M > 8π . In contrast, the second moment of our non-static PKS equation (1.1),
(1.2), does not decrease to zero if A is chosen large enough. This is the content of
our next lemma.

Lemma 1.1. Let n(x, t)be the solutionof (1.1)with vector fieldb(x) = A(−x1, x2),

subject to initial data n0 such that W0 :=
∫
R2
n0(x)(x

2
2 − x21 )dx is strictly positive.

Then, if A is chosen large enough, the second moment of the (classical) solution

V (t) =
∫
R2

n(x, t)|x |2dx increases in time.

Proof. First, the time evolution of V (t) can be calculated as follows:
⎧⎪⎪⎨
⎪⎪⎩

d

dt
V = 4M

(
1 − M

8π

)
+ 2

∫
x · b n(x, t)dx

= 4M

(
1 − M

8π

)
+ 2AW, W (t) =

∫
R2

(−x21 + x22 )n(x, t)dx .

(1.6)

Next, we compute the time evolution of W (t):

d

dt
W =

∫
(−x21 + x22 )∇ · (∇n − ∇cn − bn)dx

= − 1

2π

∫∫
n(x, t)(−2x1, 2x2) · x − y

|x − y|2 n(y, t)dxdy + 2AV

= − 1

2π

∫∫ −(x1 − y1)2 + (x2 − y2)2

(x1 − y1)2 + (x2 − y2)2
n(x, t)n(y, t)dxdy + 2AV,

where the last step follows by symmetrization. Since the first term on the right is
bounded from below by − 1

2π M2, we have

d

dt
W � − 1

2π
M2 + 2AV . (1.7)

Finally, notice that since W0 (and hence V0) are assumed strictly positive, we can
choose A large such that

AV0 − 1

4π
M2 � 0, AW0 + 2M

(
1 − M

8π

)
� 0. (1.8)

Combining (1.8), (1.6) and (1.7) yields that W (t) > 0, V (t) > 0. �	
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This shows that collapsemay be prevented if A is large enough. Indeed, our theorem
1.1 shows that collapse is avoided for large enough A: specifically (consult (3.4)
below), A = M+δ−2 with small enough δ such that

δ � (R − 1)

√
2V+(0)

M+
, R2 := M+

y2+(0)

2V+(0)
.

Observe that by (1.3) R > 1, which enables the choice of δ 
 1 and hence A � 1
for the global regularity of (1.1), (1.3).
We conjecture that a similar fast splitting scenario holds with even higher-degree
harmonics, b(x, t) = ∇H(·, t) � |x |q at |x | � 1: the higher the degree q is,
the larger amount of critical mass is expected to be ‘pushed away’ from the origin
in different directions, with even higher thresholds than 16π . A main difficulty,
however, is the lack of closure to control the second-order moments in these higher-
order cases.

Remark 1.2. (On the free energy) We note that when b = 0, E[n] becomes the
classical dissipative free energy

F =
∫
R2

n log ndx − 1

2

∫
R2

ncdx . (1.9)

Due to the importance of the property (1.5), a weak solution of (1.1) satisfying
(1.5) will be called a free energy solution. One of the important properties of the
PKS equation (1.1) with background flow velocity (1.2) is the dissipation of its
free energy E[n]. The formal computation, indicating the energy dissipation in
non-static smooth solutions, is the content of our last lemma in this section.

Lemma 1.2. Consider the PKS equation (1.1)with background fluid velocity (1.2).
If the solution is smooth enough, the free energy E[n](t) is decreasing.
Proof. The time evolution of the free energy (1.4) can be computed in terms of the
potential H = 1

2 A(x22 − x21 ),

d

dt
E[n](t) =

∫
nt (log n − c − H)dx

= −
∫

n(∇ log n − ∇c − b) · (∇ log n − ∇c − ∇H)dx

= −
∫

n|∇ log n − ∇c − b|2dx � 0.

This completes the proof of the lemma. �	
Remark 1.3. (Smoothness) Arguing along the lines [17], one can prove that the free
energy solution admits higher-order integrability and consequently retains Sobolev
smoothness for all positive time, n ∈ C∞

c ((0, T ];C∞
x ) for all T < ∞, thus our

global weak solution is in fact a global strong solution.
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Remark 1.4. (Stability) We note that by symmetry, our 16π -threshold stated in
theorem 1.1 is evenly divided between the upper- and lower-halves of the plane,
each should contain at most 8π mass. We expect that this 16π threshold remains
valid even for small asymmetric perturbations, as long as the mass in each half is
kept separately below the 8π threshold.

Our paper is organized as follows. In Section 2, we introduce the regularized
problem to (1.1) which leads to the local existence results. In Section 3, we prove
the main theorem, and in the appendix, we give detailed proofs of the results stated
in Section 2.

2. Local Existence

2.1. Weak Formulation

It is standard to understand the Keller–Segel equation (1.1) with background
fluid velocity (1.2) in the following weak formulation:

Definition 2.1. (weak formulation) The function n is the weak solution of (1.1) if
for ∀ϕ ∈ C∞

c (R2+), the following holds:

d

dt

∫
R2

ϕndx =
∫
R2

�ϕndx

− 1

4π

∫
R2×R2

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y|2 n(x, t)n(y, t)dxdy

+
∫
R2

∇ϕ · bndx . (2.1)

Taking advantage of the assumed symmetry across the x1-axis, one can further
simplify the notion of a weak solution by restricting attention to the upper half
plane, R2+ = {(x1, x2) | x2 � 0}.
Theorem 2.1. The function n is a weak solution of (1.1) if n+ := n1x2�0 satisfies
for ∀ϕ ∈ C∞

c (R2+),

d

dt

∫
R
2+

ϕn+dx =
∫
R
2+

�ϕn+dx

− 1

4π

∫
R
2+×R

2+

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y|2 n+(x, t)n+(y, t)dxdy

+
∫
R
2+

∇c− · ∇ϕn+dx +
∫
R
2+

∇ϕ · bn+dx . (2.2)

Here

∇c−(x) := −
∫

(R2+)c

x − y

2π |x − y|2 n−(y)dy

= −
∫

(R2+)c

x − y

2π |x − y|2 n+(−y)dy, n− := n1x2�0.
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Proof. Rewrite (2.1) as follows:

d

dt

∫
R
2+

ϕn+dx =
∫
R
2+

�ϕn+dx

− 1

4π

∫
R
2+×R

2+

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y|2 n+(x, t)n+(y, t)dxdy

− 1

2π

∫
R
2+×R

2−

∇ϕ(x) · (x − y)

|x − y|2 n+(x, t)n−(y, t)dxdy

+
∫
R
2+

∇ϕ · bn+dx .

The third term can be rewritten as
∫
R
2+

∇c− · ∇ϕ n+(x)dx , and we get (2.2). �	

2.2. Regularized Equation and Local Existence Theorems

In this sectionwe introduce the local existence theoremand the blowup criterion
for the Keller–Segel equation with advection. The theorems are standard, so the
proofs are postponed to the appendix. The interested reader are referred to the
papers [7,8] for further details.

In order to prove the local existence theorem and the blow up criterion for the
Keller–Segel system with advection (1.1), we regularize the system as follows:

∂nε

∂t
+ ∇ · (nε∇cε) + b · ∇nε = �nε, cε := K ε ∗ n, x ∈ R

2, t > 0, (2.3)

with the regularized kernel, K ε , given by

K ε(z) := K 1
(
z

ε

)
− 1

2π
log ε, K 1(z) :=

{− 1
2π log |z|, if |z| � 4,

0, if |z| � 1.

(2.4)

Noting that |∇K ε(z)| � Cε for all z ∈ R
2, it follows that the solutions to the

equation (2.3) exist for all time. The proof is similar to the corresponding proof in
the classical case. We refer the interested reader to the paper [7] for more details.

Before stating the local existence theorems, we introduce the entropy of the
solution

S[n] :=
∫
R2

n log ndx . (2.5)

Now the local existence theorems are expressed as follows:

Proposition 2.1. (Local ExistenceCriterion)Assume that |b|(x) � C |x |,∀x ∈ R
2.

Suppose {nε}ε�0 are the solutions of the regularized equation (2.3) on [0, T ∗). If
{S[nε](t)}ε is bounded from above uniformly in ε and in t ∈ [0, T ∗), then the
cluster points of {nε}ε→0, in a suitable topology, are non-negative weak solutions
of the PKS system with advection (1.1) on [0, T ∗) and satisfies the relation (1.5).
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Proposition 2.2. (Maximal Free-energy Solutions) Assume the boundedness of the
vector field |b|(x) � C |x | and the integrability of initial data (1 + |x |2)n0 ∈
L1+(R2), n0 log n0 ∈ L1(R2). Then there exists a maximal existence time T ∗ > 0
of a free energy solution to the PKS system with advection (1.1), (1.5). Moreover,
if T ∗ < ∞ then

lim
t→T ∗

∫
R2

n log ndx = ∞.

We conclude that if the entropy S[n](t) = ∫
n log n is bounded, then the free

energy solution of (1.1) exists locally. Moreover, if S[n](t) < ∞ for all t < ∞,
the solution exists for all time.

3. Proof of the Main Results

3.1. The Three-Step ‘Battle-Plan’

We proceed in three steps. The first step carried in Section 3.2 below, is to
control cell density distribution. From the last section, we see that an entropy
bound is essential for derivation of local existence theorems for the PKS equation
(1.1), (1.2). To this end, information about the distribution of cell density is crucial.
The following lemma is the key to the proof of the main results. It shows that mass
cannot concentrate along the the x1-axis, since we can find a thin enough strip along
the x1-axis with controlled amount of mass.
For the rest of this section we fixed a small parameter 0 < η 
 1 which will
quantify the sharp estimates in the sequel.

Lemma 3.1. Suppose a sufficiently smooth n0 is symmetric about the x1 axis and
assume that

R2 := M+
y2+(0)

2V+(0)
> 1. (3.1)

Fix a small enough 0 < η 
 1. Then there exists δ = δ(y+(0), V+(0), M, η) such
that if we choose A >

M+
δ2

, the smooth solutions to the regularized (2.3)ε satisfy,
uniformly for small enough ε,

∫
|x2|�2δ

nε(x, t)dx � (1 + η)2

2R2 M. (3.2)

Condition (3.2) implies, at least for M < 16π , that the mass inside that δ-strip is
less than 8π . On the other hand, it indicates the reason for the limitation R > 1:
for if R < 1, then the bound (3.2) would allow a concentration of mass M

2R2 � 8π
inside the strip |x2| � 2δ, which in turn leads to a finite-time blow-up.

The proof of lemma 3.1 is based on the following simple observation. Given
f with R

2+-center of mass at (·, y f ) and variation V f = ∫ |x2 − y f |2 f (x)dx , we
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find that its total mass outside the strip S[y f , r ] := {(x1, x2)||x2 − y f | � r} with
radius r = R

√
2V f /M f , does not exceed

∫
|x2−y f |>r

f (x)dx =
∫

|x2−y f |>r
f (x)

|x2 − y f |2
|x2 − y f |2 dx

� M f

2R2V f

∫
f (x)|x2 − y f |2dx = M f

2R2 .

If we can find the δ such that our target strip Sδ := {|x2| � 2δ} is lying below and
outside the strip S[y f , r ], then the total mass in the strip Sδ would be smaller than
1

2R2 M f . When nε(x, t) takes the role of f (x)with (y f , V f ) �→ (y+(t), V+(t)), the

aim is to bound the strip S[y+(t), r(t)] with radius r(t) = R
√
2V+(t)/M+ away

from a fixed strip Sδ . To this end we collect the necessary estimates on y+(t), V+(t)
and complete the proof of the lemma in Section 3.2.

The second step, carried in Section 3.3, is to prove the main theorem under a
constrained setup: equipped with lemma 3.1 we can control the entropy and prove
a weaker form of our main theorem for any M < 16π (which is still larger than
the 8π barrier), under the constraint that the mass M concentrates far enough from
the x1-axis. This is quantified in our next theorem. We recall that a small parameter
0 < η 
 1 was already quantified in lemma 3.1.

Theorem 3.1. Consider the PKS equation (1.1)with background fluid velocity (1.2)
subject to Hs(s � 2) initial data, symmetric about the x1-axis, with mass M =
|n0|1 < 16π , and bounded second moment (1 + |x |2)n0 ∈ L1(R2). If R2 =
M+

y2+(0)

2V+(0)
is large enough so that

R2 >
(1 + η)2M

16π − M
, (3.3)

then there exists a large enough A = A(M, y+(0), V+(0), η), such that the free
energy solution to PKS (1.1), (1.2) exists for all time.

Observe that R is a dimensionless parameter and R being large indicates that
most of the mass concentrates away from the ‘critical’ strip, Sδ along the x1-axis,
namely — either the center of mass y+ is far enough and/or the mass variation
V+/M+ is small enough. Either way, we find that for any M < 16π , if R is large
enough so that (3.3) holds, then (3.1) yields global existence. Although theorem
3.1 is not as sharp as the main theorem, its proof is more illuminating and can be
extended easily to prove the main theorem for the ‘limiting case’ of any M < 16π .
We therefore include its proof in Section 3.3.
Finally, the third step carried in Section 3.4 presents the proof of the main theorem
1.1.
We turn to a detailed discussion of the three steps.
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3.2. Step 1—Control of the Cell Density Distribution

As pointed out before, the proof involves the calculation of y+(t) and V+(t),
summarized in the following two lemmas. Here and below, we let A � B denote
the relation A � CB with a constant C which is independent of δ.

Lemma 3.2. Consider the regularized PKS equation (2.3) with background fluid
velocity (1.2). Assume that the initial center of mass y+(0) is bounded away from
the x1-axes in the sense that (3.1) holds. Then for any sufficiently small δ > 0, there
exists a large enough amplitude of the ambient vector field, A = δ−2M+, and a
constant C (independent of δ), such that y+(0)−Cδ > 0 and the time evolution of
(2.3), (1.2) pushes the center of mass, y+(t), away from the critical strip, namely

y+(t) �
[
y+(0) − Cδ

]
eAt , A = M+

δ2
. (3.4)

Lemma 3.3. Consider the regularized PKS equation (2.3) with background fluid
velocity (1.2). Assume that the initial variation around the center of mass V+(0) is
not too large in the sense that (3.1) holds. Then for any sufficiently small δ > 0, there
exists a constant C = C(V+(0)) such that the variation V+(t) remains bounded
from above,

V+(t) �
[
CM+δ + V+(0)

]
e2At . (3.5)

We note that all the calculations made below should be carried out at the level of
the regularized equation (2.3), but for the sake of simplicity, we proceed at the
formal level using the weak formulation (2.2). We explicitly point when there is a
technical subtlety in the derivation due to difference between the regularized and
weak formations.

We begin with the proof of Lemma 3.2. To calculate the dynamics of the center
of mass, one needs to formally test the equation with respect to ϕ(x) = x2. To
stay away from the critical strip Sδ , however, we introduce an approximate test
function2 ϕ ≈ x2 with a cut-off away from Sδ

ϕ :=
⎧⎨
⎩
x2 x2 ∈ (2δ,∞),

0 x2 ∈ (−∞, δ),

smooth x2 ∈ (δ, 2δ).

Note that there exists a constant Cϕ such that |ϕ| � 2δ, ∀x2 � 2δ and |∇ϕ| +
δ|∇2ϕ| � Cϕ . Here and below, we use Cϕ to denote ϕ-dependent constants that
otherwise are independent of δ.

Moreover, replacing
∫
R
2+
x2ndx with

∫
R
2+

ϕndx , we lose information on the stripe

{(x1, x2)||x2| � 2δ}; however, the contribution of this part is small in the sense that∣∣∣∣
∫
0�x2�2δ

ϕn+dx −
∫
0�x2�2δ

x2n+dx
∣∣∣∣ � 4M+δ. (3.6)

2 To be precise, one should use here the usual argument of a further smooth cut-off for
large ϕ at |x1| + x2 � 1, and recover the result uniformly with respect to that cut-off
parameter.
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Next, one can use ϕ and the weak formulation (2.2) to extract information about
y+:
d

dt

∫
R
2+

ϕn+dx =
∫
R
2+

�ϕn+dx

− 1

4π

∫
R
2+×R

2+

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y|2 n+(x, t)n+(y, t)dxdy

+
∫
R
2+
n+∇c− · ∇ϕdx +

∫
R
2+

∇ϕ · bn+dx

= I + I I + I I I + I V . (3.7)

Now we estimate the right hand side of (3.7) term by term. The first and second
terms are relatively easy to control from above,

|I | =
∣∣∣∣∣
∫
R
2+

�ϕn+dx
∣∣∣∣∣ � CϕM+

δ
, (3.8a)

|I I | � 1

4π
|∇2ϕ|∞

∫ ∫
R
2+×R

2+
n+(x)n+(y)dxdy � 1

4π

Cϕ

δ
M2+. (3.8b)

Next we upper-bound the third term in (3.7) in the following way:

|I I I | =
∣∣∣∣∣
∫
R
2+

∂x2c−n+∂x2ϕdx

∣∣∣∣∣ � Cϕ

2π

M+
δ

∫
R
2+
n+dx � Cϕ

2π

M2+
δ

. (3.8c)

This follows from the pointwise bound |∂x2c−(x)| � 1

2π

M+
|x2| shown below, and

the fact that supp(ϕ) is δ away from the x1-axis, and hence
1

|x2| � 1

δ
,

|∂x2c−(x)| = 1

2π

∣∣∣∣∣
∫

(R2+)c

(x − y)2
|x − y|2 n−(y)dy

∣∣∣∣∣
� 1

2π

1

|x2|
∫

(R2+)c

|x2|
|x2| + |y2|n−(y)dy � 1

2π

M−
|x2| = 1

2π

M+
|x2| .

(3.9)

Finally, we need to address additional transport term I V in (3.7) to compete

with the focusing effect. Recall that b = A(−x1, x2)with A = M+
δ2

. First we write

I V down explicitly:

I V =
∫

b · n+∇ϕdx = M+
δ2

∫
R
2+
x2∂x2ϕn+dx .

Next we replace the right hand side by
∫

ϕn+dx . Due to the fact that x2∂x2ϕ =
x2 = ϕ for x2 > 2δ, the error introduced in this process originates from the thin
2δ-strip∣∣∣∣

∫
δ<x2<2δ

(x2∂x2ϕ − ϕ)n+dx
∣∣∣∣ �

∫
δ<x2<2δ

|x2∂x2ϕ − ϕ|n+dx � CϕδM+,
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and we conclude that

I V � M+
δ2

(∫
R
2+

ϕn+dx − CϕδM+

)
� M+

δ2

∫
R
2+

ϕn+dx − CϕM2+
δ

. (3.10)

Combining equation (3.7) with the upper-bounds (3.8) and the lower-bound
(3.10) while recalling the definition of A (3.4), we arrive at

d

dt

∫
R
2+

ϕn+dx � −Cϕ

M2+
δ

+ A
∫
R
2+

ϕn+dx,

which implies that
∫
R
2+

ϕn+dx �
(∫

R
2+

ϕn0dx − CϕM+δ

)
eAt . (3.11)

Finally, we calculate the center of mass of the upper half plane using the lower
bound (3.11) and the error control (3.6)

y+(t) = 1

M+

(∫
0�x2�2δ

x2n+dx −
∫
0�x2�2δ

ϕn+dx +
∫
R
2+

ϕn+dx
)

� − 1

M+

∣∣∣∣
∫
0�x2�2δ

x2n+dx −
∫
0�x2�2δ

ϕn+dx
∣∣∣∣+ 1

M+

∫
R
2+

ϕn+dx

� − 4δ + 1

M+

(∫
R
2+

ϕn0dx − CϕM+δ

)
eAt

�
(
y+(0) − Cϕδ

)
eAt .

This completes the proof of lemma 3.2. �	
Remark 3.1. The only difference in estimating the regularized solutions (2.3) vs.
the formal calculation we have done above is in terms II and III. In the calculation
for the (2.3), we will need the estimate

|∇K ε(z)| � 1

2π |z| , ∀z ∈ R
2.

Here we show how to get a similar estimate for term I I in (3.7) for the regularized
equation (2.3):

I I =
∣∣∣∣∣
∫∫

R
2+×R

2+
∇ϕ(x)∇x [K ε(|x − y|)]nε(y)nε(x)dxdy

∣∣∣∣∣
= 1

2

∣∣∣∣∣
∫∫

R
2+×R

2+

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y| ∇K ε(|x − y|)nε(x)nε(y)dxdy

∣∣∣∣∣
� 1

4π

∣∣∣∣∣
∫∫

R
2+×R

2+

|∇ϕ(x) − ∇ϕ(y)|
|x − y| nε(x)nε(y)dxdy

∣∣∣∣∣
� 1

4π
|∇2ϕ|∞M2+ � 1

4π

Cϕ

δ
M2+.
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The treatment of term I I I is similar to the one we gave above.

Next we address the proof of Lemma 3.3. The main goal is to calculate time
evolution of the variation

V+(t) :=
∫
R
2+

|x2 − y+(t)|2n(x, t)dx .

We again use C to denote constants which may change from line to line but are
independent of δ.

The first obstacle is that we cannot choose |x2 − y+|2 as a test function due to
the fact that y+(t) depends on the solution. However, by the definition of y+ we
can expand the V+-integrand, ending up with the usual

V+(t) =
∫
R
2+

|x2|2n+(x, t)dx − M+y2+(t). (3.12)

Since we already know y+, it is enough to calculate the
∫
R
2+ |x2|2n(x, t)dx .

For simplicity, we plug |x2|2 inside the weak formulation (2.2) and (3.12) to get
the time evolution of V+. Of course, what one really does is to use a test function
to approximate the |x2|2. Furthermore, when we use the weak formulation, we
formally integrated by part twice, but since the value and the first derivative of
the function |x2|2 are zero on the boundary, we will not create extra dangerous
boundary term.

First combining (2.2) and (3.12) yields

d

dt
V+ = d

dt

∫
R
2+

|x2|2n+(x, t)dx − M+
d

dt
y2+(t)

=
∫
R
2+

�ϕn+dx

− 1

4π

∫
R
2+×R

2+

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y|2 n+(x, t)n+(y, t)dxdy

+
∫
R
2+

∇c−n+∇ϕdx +
∫
R
2+

∇ϕ · bn+dx − d

dt

(
M+(y+)2

)

= I + I I + I I I + I V − M+
d

dt
y2+(t). (3.13)

Next we estimate every term on the right hand side of (3.13). The first two terms
are estimated as follows:

|I | =
∣∣∣∣∣
∫
R
2+

�(x22 )n+dx
∣∣∣∣∣ = 2M+, (3.14)

and

|I I | =
∣∣∣∣∣−

1

4π

∫
R
2+×R

2+

(∇(x22 ) − ∇(y22 )) · (x − y)

|x − y|2 n+(x, t)n+(y, t)dxdy

∣∣∣∣∣
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� 1

4π

∫
R
2+×R

2+
2n+(x)n+(y)dxdy � 1

2π
M2+. (3.15)

Nowfor the third term in (3.13),weuse theprevious upper-bound (3.9), |∂x2c−(x)| �
1
2π

M+
|x2| , which yields

|I I I | =
∣∣∣∣∣
∫
R
2+

∂x2c−n+2x2dx
∣∣∣∣∣ � 1

2π

∫
R
2+
2|x2|M+

|x2|n+dx � 1

π
M2+. (3.16)

Note that for the term I I and I I I , we only estimate them formally above, one can
prove the estimates explicitly using the same techniques as the one in Remark 3.1.
For the I V term in (3.13), we use the (3.12) again to obtain

|I V | =
∣∣∣∣∣
∫
R
2+

∇x22 · bn+dx
∣∣∣∣∣ = 2A

∣∣∣∣∣
∫
R
2+
x22n+dx

∣∣∣∣∣ = 2A(V+ + M+y2+). (3.17)

Collecting equation (3.13) and all the estimates (3.14), (3.15), (3.16) and (3.17)
above, we have the following differential inequality:

d

dt

(
1

M+
V+(t) + y2+(t)

)
� C(1 + M+) + 2A

(
1

M+
V+(t) + y2+(t)

)
,

which yields

1

M+
V+(t)+y2+(t) � C

(
1 + 1

M+

)
δ2e2At+ 1

M+
V+(t)e2At+y2+(0)e2At . (3.18)

Combining Lemma 3.2 with (3.18) yields

1

M+
V+(t) +

[
(y+(0) − Cδ) eAt

]2
� 1

M+
V+(t) + y2+(t)

� C

(
1 + 1

M+

)
δ2e2At

+ 1

M+
V+(0)e2At + y2+(0)e2At .

By collecting similar terms, we finally have

1

M+
V+(t) �

[
2Cδy+(0) + C

(
1 + 1

M+

)
δ2 + 1

M+
V+(0)

]
e2At , (3.19)

which completes the proof of Lemma 3.3. �
Equippedwith the estimate on V+(t), we can now conclude the proof of Lemma

3.1.
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Proof. (Lemma 3.1) Once 0 < η 
 1 was fixed, we can clearly choose a small
enough δ such that by (3.5)δ , there holds

V+(t) � (1 + η)V+(0)e2At . (3.20)

Now recalling that R = y+(0)
√

M+
2V+(0) > 1, then we can use (3.4), (3.20) and

further choose δ small enough to get

y+(t) − R

1 + η

√
2V+(t)

M+
�
[
y+(0) − Cδ − R√

1 + η

√
2V+(0)

M+

]
eAt

=
[(

1 − 1√
1 + η

)
y+(0) − Cδ

]
eAt

� 2δeAt � 2δ.

Thus, the ‘thin’ δ-strip along the x1-axis,Sδ := {(x1, x2)|0 � x2 � 2δ}, lies outside
the strip centered around y+(t), uniformly in time,

Sδ ⊂ {(x1, x2) | |x2 − y+(t)| > Rη(t)}, Rη(t) := R

1 + η

√
2V+(t)

M+
.

It follows that thanks to our choice of δ, the mass inside the δ-strip Sδ does not
exceed

∫
Sδ

n+(x, t)dx �
∫
R
2+∩{|x2−y+|>Rη}

n+(x, t)dx

�
∫
R
2+∩{|x2−y+|>Rη}

n+(x, t)
|x2 − y+|2
|x2 − y+|2 dx

� (1 + η)2

R22V+/M+

∫
R
2+
n+(x, t)|x2 − y+|2dx = (1 + η)2

R22V+/M+
V+

� (1 + η)2

2R2 M+.

By symmetry, the mass inside the symmetric δ-strip, {(x1, x2)||x2| � 2δ} is smaller

than
(1 + η)2

2R2 2M+ = (1 + η)2

2R2 M , uniformly in time, which completes the proof

of Lemma 3.1. �	

Remark 3.2. One can do a similar computation to get the evolution for the higher

moment estimates
∫
R
2+
n(x, t)|x |2kdx , and derive similar results to Lemma 3.1.
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3.3. Step 2—Proof of the Main Theorem Under the Constrained Setup (3.3)

With the Lemma 3.1 at our disposal, we can now turn to the proof of theorem
3.1 along the lines of [8]. Note that the actual calculation are to be carried out with
the regularized solutions nε of (2.3), though for the sake of simplicity, we only do
the formal calculation on n(x) = n(·, t).

The key is to use the logarithmic Hardy–Littlewood–Sobolev inequality to get
a bound on the entropy S[n].
Theorem 3.2. (Logarithmic Hardy–Littlewood–Sobolev Inequality) [9] Let f be
a nonnegative function in L1(R2) such that f log f and f log(1 + |x |2) belong to
L1(R2). If

∫
R2 f dx = M, then

∫
R2

f log f dx + 2

M

∫∫
R2×R2

f (x) f (y) log |x − y|dxdy � −C(M) (3.21)

with C(M) := M(1 + logπ − logM).

Remark 3.3. It is pointed out in [8] that by multiplying f by indicator functions,
one can prove that the inequality (3.21) remains true with R

2 replaced by any
bounded domains D ⊂ R

2.

The idea of the proof goes as follows. By observing that the mass in the up-
per half plane and lower half plane are subcritical (|n±|1 < 8π ), we plan to use the
logarithmicHardy–Littlewood–Sobolev inequality on these sub-domains to get uni-
form bound on the entropy. However, without extra information concerning the cell
density distribution, naive application of logarithmic Hardy–Littlewood–Sobolev
inequality fails. For this approach to work, the density distribution constraint re-
quired is that the cells in the upper and lower half plane are well-separated by a
‘cell clear strip’ in which the total number of cells is sufficiently small. The strip
is constructed through applying Lemma 3.1. Combining the logarithmic Hardy–
Littlewood–Sobolev inequality and the cell seperation constraint, we can use a ’total
entropy reconstruction’ trick introduced in [8] to obtain entropy bound. Now let’s
start the whole proof.

Proof of Theorem 3.1. According to propositions 2.1, 2.2, the life-span of free-
energy solution is determined by the finite bound on the entropy S[n](t). To this
end, we decompose the free energy into three parts,

E[n] ≡
(
1 − K

8π

)∫
R2

n log ndx

+ 1

8π

(
K
∫
R2

n log ndx

+ 2
∫∫

R2×R2
n(x)n(y) log |x − y|dxdy

)
−
∫
R2

Hndx

=:
(
1 − K

8π

)
S[n] + I1 − I2.

(3.22)
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Recall that since the free energy E[n](t) in (1.4) is decreasing,

(
1 − K

8π

)
S[n] ≡ E[n] − I1 + I2 � E[n0] − I1 + I2,

then the desired entropy bound and hence a finite entropy solution follow provided
we show the existence of a constant K < 8π , for which I1 = I1(K ) is bounded
from below and I2 is bounded from above. Our main task is estimating I1(K ) from
below, which is further decomposed into three terms

I1(K ) = K
∫
R2

n log+ ndx + 2
∫∫

R2×R2
n(x)n(y) log |x − y|dxdy

− K
∫
R2

n log− ndx

=: KI11 + I12 + KI13.

To estimate the various terms, we first construct the ’cell clear strip’, 
0 shown in
Fig. 1,


+ := {x2 | x2 > 2δ}, 
− := {x2 | x2 < −2δ}, 
0 := {x2 | |x2| � 2δ}. (3.23)

Thus, region 
+ contains points in the upper half plane which are 2δ away from the
x1 axis, whereas region 
− contains points in the lower half plane with the same
property. Region
0 is a closed 2δ-neighborhood of the x1-axis. The δ neighborhood
of the 
+, 
− region is denoted as follows:



(δ)
+ =

{
x2 | x2 > δ}, 


(δ)
− = {x2 | x2 < −δ

}
. (3.24)

Fig. 1. Regions 
+, 
−, 
0
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In the sequel, we will further decompose 
0 into subdomains

S+ = {x2 | δ < x2 � 2δ}, S− = {x2 | − δ > x2 � −2δ}, S0 = {x2 | |x2| � δ}.
(3.25)

Estimating KI11 + I12 from below. We fix K as

K := max

{∫



(δ)
+

ndx +
∫


0

ndx,
∫



(δ)
−

ndx +
∫


0

ndx

}
, (3.26)

and claim that K is admissible. Indeed, lemma 3.1 with our choice of R2 assumed
large enough so that (3.3) holds implies that the totalmass inside
0 does not exceed

∫

0

ndx =
∫

{x2 | |x2|�2δ}
ndx � (1 + η)2

2R2 M � 8π − M

2
. (3.27)

Therefore, the 
0 strip is the ’cell clear strip’; moreover, since the upper-half plane

mass equals M
2 , the admissibility of K follows, K � M

2
+ (1 + η)2

2R2 M < 8π .

The motivation for this choice of K comes from the straightforward bound

∫



(δ)
+

ndx
∫



(δ)
+

n log+ ndx

+
∫



(δ)
−

ndx
∫



(δ)
−

n log+ ndx +
∫


0

ndx
∫


0

n log+ ndx

�
∫



(δ)
+

ndx
∫
R
2+
n log+ ndx +

∫



(δ)
−

ndx
∫

(R2+)c
n log+ ndx

+
∫


0

ndx
∫
R2

n log+ ndx

� max

{∫



(δ)
+

ndx +
∫


0

ndx,
∫



(δ)
−

ndx +
∫


0

ndx

}
·
∫
R2

n log+ ndx =: KI11.

(3.28)

Indeed, we proceed along the lines of [8], appealing to the Logarithmic Hardy–
Littlewood–Sobolev inequality in the three regions 


(δ)
+ , 


(δ)
− , 
0 , obtaining

∫



(δ)
+

n(x)dx
∫



(δ)
+

nlog+ ndx + 2
∫∫



(δ)
+ ×


(δ)
+

n(x)n(y) log |x − y|dxdy � C,

∫



(δ)
−

n(x)dx
∫



(δ)
−

nlog+ ndx + 2
∫∫



(δ)
− ×


(δ)
−

n(x)n(y) log |x − y|dxdy � C,

∫

0

n(x)dx
∫


0

nlog+ ndx + 2
∫∫


0×
0

n(x)n(y) log |x − y|dxdy � C.

Wenowsum these three inequalities.By (3.28), the sumof their first three termsdoes
not exceed KI11; bookkeeping the overlap of the three domains 


(δ)
+ ×


(δ)
+ , 


(δ)
− ×
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(δ)
− and 
0 × 
0, consult Fig. 3 we find the sum of the second three terms is I12

modulo the correction I121 − I122 below,

KI11 + I12 � − C + 4
∫∫

((

(δ)
+ )c×
+)∪(
−×(S+∪S0))

n(x)n(y) log |x − y|dxdy

− 2
∫∫

(S+×S+)∪(S−×S−)

n(x)n(y) log |x − y|dxdy
=: − C + I121 − I122.

(3.29)

Next applying the fact that |x − y| � δ for all (x, y) in the integral domain of I121,
we estimate the I122 and I122,

I121 �4M2 log δ,

I122 �2
∫∫

(S+×S+)∪(S−×S−)

n(x)n(y) log+ |x − y|dxdy

�C
∫∫

(S+×S+)∪(S−×S−)

n(x)n(y)(1 + |x |2 + |y|2)dxdy

�C(M2 + 2M
∫

n(x)|x |2dx). (3.30)

Combining (3.30) with (3.29) yields KI11 + I12 � 4M2 log δ − C(1 + M2 +
M
∫
n|x |2dx).

Estimating I13 frombelow.We recall thewell-known upper bound on the negative
part of the entropy, [7,8], stating that for f positive function,

∫
R2

f log− f dx � 1

2

∫
R2

|x |2 f dx + log(2π)

∫
R2

f dx + 1

e

� C

(
1 + M +

∫
n|x |2dx

)
. (3.31)

Combining (3.31) with our previous lower-bound of KI11 + I12 yields
I1(K ) = KI11 + I12 + KI13

� 4M2 log δ − C(M + K )

(
1 + M +

∫
n|x |2dx

)
.

(3.32)

It remains to upper-bound the I2 term in (3.22). Since

∣∣∣∣
∫

Hndx

∣∣∣∣ � A
∫

n|x |2dx ,
it is therefore suffices to show that the second moment of n is bounded for any finite
time. Indeed, the time evolution of the second moment can be estimated as follows:

d

dt

∫
n|x |2dx � 4AM + 4A

∫
Hn(x)dx � 4AM + A2

2

∫
n|x |2dx,

andGronwall inequality yields thefinite bound |I2| �
∫

n(·, t)|x |2dx � C(A, t) <

∞.
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Finally, equipped with the lower bound on I1(K ) with K < 8π and with
the upper bound on I2 we revisit (3.23) to conclude that there exists a constant
C = C(M, A, T ) < ∞ such that the entropy S[n(·, t)] is uniformly bounded
(independent of ε) for any finite time interval t ∈ [0, T ],

S[n](t) � 1

(1 − K
8π )

(
E[n0] + C − 1

2π
M2 log δ

)
, ∀t ∈ [0, T ]. (3.33)

Now by the Propositions 2.1, 2.2, we have that the free energy solution exists on
any time interval [0, T ], ∀T < ∞.

3.4. Step 3—Proof of the Main Theorem

In the proof of Theorem 3.1, we see that the cell population is separated by a
’cell clear zone’ near the x1 axis. Since total mass in the “cell clear zone” is small,
we can heuristically treat the total cell population as a union of two subgroups with
subcritical mass (< 8π ). However, since we lack sufficiently good control over the
total number of cells near the x1 axis, we cannot use this idea to prove the optimal
result as stated in Theorem 1.1. The idea of proving Theorem 1.1 is that instead
of considering the total cell population as the union of two subgroups separated
by one fixed ‘cell clear zone’, we treat it as the union of three subgroups with
subcritical mass, namely, the cells in the upper half plane, the lower half plane and
the neighborhood of the x1 axis, respectively. These three subgroups of cells are
separated by two ‘cell clear zones’ varying in time.

The main difficulty in the proof is setting up the three new regions such that:

1. mass inside each region is smaller than 8π ;
2. the total mass of cells near their boundaries is well-controlled.

Once the construction is completed, the remaining steps will be similar to step
2.

Proof of Theorem 1.1. We start by constructing the three regions. First we note
that the Lemma 3.1 implies that there exists δ > 0 such that the following estimate
is satisfied for a fixed R > 1 and η chosen small enough:

∫
|x2|�2δ

ndx � (1 + η)2

R2

∫
R2

ndx � 1

2
M, ∀t > 0. (3.34)

Now the region L = {(x1, x2)||x2| � 2δ} have total mass less than 1
2M = M+ <

8π for all time.
Secondly, we subdivide the region L into J pieces:

L = J∪
1
Li , Li :=

{
(x1, x2)

∣∣ 2δ
J

(i) > |x2| � 2δ

J
(i − 1)

}
.

Here J = J (M) � 10, to be determined later, depends on M . By the pigeon hole
principle, there is at least three strips Li such that∫

Li
n(x)dx � 2

J
M+.
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Fig. 2. Regions 
+, 
−, 
0 and 
ω in the proof of the main theorem

Suppose there are only two strips with mass smaller than 2
J M+, then total mass in

L will be bigger than (J − 2) 2J M+ > M+, which is a contradiction. Now we pick
from these three strips the one which is neither L1 nor L J . As a result, this strip Li

does not touch the x1 axis nor the boundary of L . We denote this i by i∗. The Li∗

is the ‘cell clear zone’. Notice that here i∗ = i∗(n, t) depends on time.
Finally, we use this i∗ to define the regions depicted in Fig. 2. First we define

the three regions, each of which has total mass smaller than 8π :


+ =
{
x2 � 2δ

J
i∗
}
, 
− =

{
x2 � −2δ

J
i∗
}
, 
0 =

{
|x2| � 2δ

J
(i∗ − 1)

}
.

Next we set

ρ = 2δ

3J
,

and define the ρ neighborhood of the above three regions as follows:



(ρ)
+ =

{
x2 >

2δ

J

(
i∗ − 1

3

)}



(ρ)
− =

{
x2 < −2δ

J

(
i∗ − 1

3

)}
,
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(ρ)
0 =

{
|x2| <

2δ

J

(
i∗ − 2

3

)}
. (3.35)

Now we define the complement 
ω of the above three regions 

(ρ)
i , i = +,−, 0:


ω =
{
2δ

J

(
i∗ − 2

3

)
� |x2| � 2δ

J

(
i∗ − 1

3

)}
= 
ω+ ∪ 
ω−, 
ω± = 
ω ∩ R

2±.

Now we define the complement 

(ρ)
ω of ∪i∈{±,0}
i and decompose it into subdo-

mains:


(ρ)
ω = ( ∪i∈{±,0} 
i

)c = (



(ρ)
ω+
) ∪ (
(ρ)

ω−
)
,



(ρ)
ω± = 
(ρ)

ω ∩ R
2±,


(ρ)
ω = 
ω ∪ S+ ∪ S− ∪ S0,

S+ = 

(ρ)
+ \
+, S− = 


(ρ)
− \
−, S0 = 


(ρ)
0 \
0.

Remark 3.4. It is important to notice that the regionswe are constructing are chang-
ing with respect to the given time t . Therefore, by doing the argument below, we
can only show that the entropy is bounded at time t , but since t is an arbitrary finite
time, we have the bound on entropy for ∀t ∈ [0, T ],∀T < ∞.

We start estimating the entropy. By the free energy dissipation, we obtain

E[n0] �
(
1 − K

8π

)∫
R2

n log ndx

+ 1

8π

(
K
∫
R2

nlog+ndx + 2
∫∫

R2×R2
n(x)n(y) log |x − y|dxdy

)

−
(

K

8π

∫
R2

n log− ndx +
∫
R2

Hndx

)

=:
(
1 − K

8π

)
S[n(T )] + I1(K ) − I2(K ). (3.36)

To derive entropy bound, we need to estimate I1 from below for K < 8π and
estimate I2 from above. We start by estimating I1. Combining the definition of Li∗

and (3.34) yields
∫



(ρ)
+

ndx � M+ = 1

2
M < 8π, (3.37)

∫



(ρ)
−

ndx � M+ = 1

2
M < 8π, (3.38)

∫



(ρ)
0

ndx � M+ = 1

2
M < 8π, (3.39)

∫



(ρ)
ω

ndx �
∫
Li∗

ndx � 2

J
(M+). (3.40)
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Now by the log-Hardy–Littlewood–Sobolev inequality (3.21), we have that∫



(ρ)
i

n(x)dx
∫



(ρ)
i

n(x) log+ n(x)dx

+ 2
∫∫



(ρ)
i ×


(ρ)
i

n(x)n(y) log |x − y|dxdy � −C, i = +,−, 0,

∫



(ρ)
ω±

n(x)dx
∫



(ρ)
ω±

n(x) log+ n(x)dx

+ 2
∫∫



(ρ)
ω±×


(ρ)
ω±

n(x)n(y) log |x − y|dxdy � −C.

Same as in Section 3.3, we recall the definition of I1 (3.36), and use the estimates
above to reconstruct the entropy and the potential on the whole R2 as follows:

−C �
(
K
∫
R2

n(x) log+ n(x)dx + 2
∫∫

R2×R2
n(x)n(y) log |x − y|dxdy

)

− 2
∫∫




n(x)n(y) log |x − y|dxdy

+ 2
∫∫

(S+×S+)∪(S−×S−)∪(S+
0 ×S+

0 )∪(S−
0 ×S−

0 )

n(x)n(y) log |x − y|dxdy

=: 8πI1 − I3 + I4. (3.41)

The region
 and the integral domain of I4 are indicated in Fig. 3.3 The K in (3.41)
can be estimated using (3.40) as follows:

K := M+ +
∫



(ρ)
ω

ndx �
(
1 + 2

J

)
M+. (3.42)

By the assumption M+ < 8π , we can make J big such that K < 8π . This is where
we choose the J = J (M).

Applying the fact that |x − y| � 2δ
3J , ∀(x, y) ∈ 
, the I3 and I4 terms in (3.41)

can be estimated as follows:

I3 � CM2 log
2δ

3J
,

I4 � 2
∫∫

(S+×S+)∪(S−×S−)∪(S+
0 ×S+

0 )∪(S−
0 ×S−

0 )

n(x)n(y) log+ |x − y|dxdy

� C
∫∫

(S+×S+)∪(S−×S−)∪(S+
0 ×S+

0 )∪(S−
0 ×S−

0 )

n(x)n(y)(1 + |x |2 + |y|2)dxdy

3 Region 
 is the union of the following nine regions, ((1) − (9)):

1)
+ × (

(ρ)
+ )c, 2)S+ × (
+ ∪ 


(ρ)
ω+)c, 3)
ω+ × (


(ρ)
ω+)c,

1)4)S+
0 × (


(ρ)
0 ∪ 


(ρ)
ω+)c, 5)
0 × (


(ρ)
0 )c, 6)S−

0 × (

(ρ)
0 ∪ 


(ρ)
ω−)c,

1)7)
ω− × (

(ρ)
ω−)c, 8)S− × (


(ρ)
− ∪ 


(ρ)
ω−)c, 9)
− × (


(ρ)
− )c.
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Fig. 3. Region 
 in R
2 × R

2

� C(M2 + M
∫

n|x |2dx). (3.43)

Combining (3.41), (3.42) and (3.43) yields

I1 �CM2 log
2δ

3J
− C(1 + M2 + M

∫
n|x |2dx). (3.44)

We estimate the I2 term in (3.36) using (3.31) and the second-moment bound of n
as in the proof of (3.33):

I2(t) � C(M, A, T ) < ∞, ∀t � T . (3.45)

Combining (3.36), (3.44), (3.45) and the second moment bound of n, we obtain
that

S[n](T ) � 1

(1 − K
8π )

(
E[n0] + C(M, A, T ) − CM2 log

2δ

3J

)
< ∞, ∀T < ∞.

(3.46)

Once the entropy is bounded for any finite time, the existence is guaranteed by
Propositions 2.1 and 2.2.
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Appendix A.

In the appendix, we prove the two local existence theorems stated in section
2.2. The proof follows along the same line, as the analysis in [8].

Appendix A.1. Proof of Proposition 2.1

Proof. For any fixed positive ε, following the argument as in section 2.5 of [7],
we obtain the global solution in L2([0, T ], H1)∩C([0, T ], L2) for the regularized
Keller–Segel system with advection (2.3).

The goal is to use the Aubin–Lions Lemma to show that the solutions {nε}ε�0
is precompact in certain topology. As in the paper [8], we divide the proof into
steps.

Step 1.A priori estimates on nε and cε . In this step, we derive several estimates
which we will need later.

First we estimate the second moment

V :=
∫
R2

nε |x |2dx .

The timeevolutionofV canbe estimatedusing the regularised equation (2.3) and the

fact that the gradient of the regularized kernel K ε is bounded |∇K ε(z)| � 1

2π |z| :

d

dt
V = 4M +

∫∫
R2×R2

nε(x, t)nε(y, t)(x − y)∇K ε(x − y)dxdy

+ 2
∫

x · bnε(x)dx

�4M + 2C
∫

nε |x |2dx .

By Gronwall, we have that

V (t) � 4M

2C
e2CT + V0 � CV (T ) < ∞, ∀0 � t � T, (A.1)

from which we obtain that (1 + |x |2)nε ∈ L∞([0, T ], L1) uniformly in ε.
Next, we estimate |nε log nε |L∞([0,T ];L1) and | ∫ nεcεdx |L∞

t
. Combining the

assumption of the proposition 2.1 and (3.31) yields∫
|nε log nε |dx �

∫
nε(log nε + |x |2)dx + 2 log(2π)M + 2

e
. (A.2)

Therefore, we proved that nε log nε ∈ L∞([0, T ], L1) uniformly in ε. Recalling
the boundedness of the second moment (A.1) and the representation of cε as cε =
K ε ∗ nε , we deduce the following estimate using the Young’s inequality ab �
ea−1 + b ln b for ∀a, b � 1:

|cε |(x) =
∣∣∣∣
∫

K ε(x − y)nε(y)dy

∣∣∣∣ � C(M, V, |nε log nε |L∞([0,T ],L1))
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+C(M) log(1 + |x |), (A.3)

uniformly in ε. Combining this with the mass conservation of nε and the second
moment control (A.1), we deduce that

∣∣∣∣
∫

nεcεdx

∣∣∣∣
L∞([0,T ])

� C, (A.4)

where C is independent of ε.
Next we derive the main a priori estimate, namely, the L2([0, T ]×R

2) estimate
of

√
nε∇cε . First we calculate the time evolution of

∫
nεcεdx :

1

2

d

dt

∫
nεcεdx =

∫
nε
t c

εdx

=
∫

(�nε − ∇ · (∇cεnε) − b · ∇nε)cεdx

=
∫

nε�cεdx +
∫

nε |∇cε |2dx +
∫

bnε · ∇cεdx .

Integrating this in time yields

∫ T

0

∫
nε |∇cε |2dxdt

= 1

2

∫
nεcεdx(T ) − 1

2

∫
nεcεdx(0)

−
∫ T

0

∫
nε�cεdxdt −

∫ T

0

∫
nεb · ∇cεdxdt. (A.5)

Now we estimate the right hand side of (A.5). We see from (A.4) that the first two
terms on the right hand side is bounded. Next we estimate the third term on the right
hand side of (A.5), which requires information derived from the entropy bound. By
the property that ∇ · b = 0, we formally calculate the time evolution of S[n](t) as

d

dt
S[n](t) = −4

∫
|∇√

n|2dx +
∫

n2(t)dx . (A.6)

The interested reader is referred to [7] for more details. We need to estimate the
second term in (A.6). Before doing this, note that, for K > 1,

∫
n�K

ndx � 1

log(K )

∫
n+ log ndx � C

log(K )
=: η(K ) (A.7)

can be made arbitrarily small. Now we can use the Gagliardo-Nirenberg-Sobolev
inequality together with (A.7) to estimate the second term in (A.6) as follows:

∫
n2dx � MK +

∫
n�K

n2dx � MK +
(∫

n�K
ndx

)1/2

|n|3/23

� MK + η(K )1/2CM1/2|∇√
n|22.
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Combining this with (A.6) and (A.7), we have

d

dt
S[n](t) = −(4 − η(K )1/2CM1/2)

∫
|∇√

n|2dx + MK . (A.8)

The factor −(4 − η(K )1/2CM1/2) can be made non-positive for K large enough
and therefore we have that

∫ T

0

∫
|∇√

n|2dxdt � S[n](0) − S[n](T ) + MKT

(4 − 2η(K )1/2M1/2C)
.

It follows that ∇√
n is bounded in L2([0, T ] × R

2). The derivation for
|∇√

nε |L2([0,T ];L2) � C is similar but more technical, and the interested read-
ers are referred to [7] for more details. As a consequence of the L2([0, T ] × R

2)

estimate on ∇√
nε and of the computation

d

dt
S[nε](t) = −4

∫
|∇√

nε |2dx +
∫

nε(−�cε)dx,

we have the estimate ∫ T

0

∫
nε(−�cε)dxdt � C. (A.9)

This completes the treatment of the third term on the right hand side of (A.5). Next
we estimate the last term

∫ T
0

∫
bnε · ∇cεdxdt in (A.5). First we calculate the time

evolution of
∫
Gnεdx as follows:

d

dt

∫
Gnεdx =

∫
G∇ · (∇nε − ∇cεnε − bnε)dx

=
∫

�Gnεdx +
∫

∇G · ∇cεnεdx +
∫

|b|2nεdx

=
∫

b · ∇cεnεdx +
∫

|b|2nεdx .

Now, integrating in time, we obtain
∣∣∣∣
∫ T

0

∫
b · ∇cεnεdx

∣∣∣∣ �
∣∣∣∣
∫

Gnεdx(0)

∣∣∣∣+
∣∣∣∣
∫

Gnεdx(T )

∣∣∣∣
+
∣∣∣∣
∫ T

0

∫
|b|2nεdxdt

∣∣∣∣. (A.10)

From the assumption |b| � |x |, we have that the right hand side of (A.10) can be
bounded in terms of the second moment V :∣∣∣∣

∫
Gnεdx

∣∣∣∣+
∣∣∣∣
∫

|b|2nεdx

∣∣∣∣ � C
∫

nε |x |2dx . (A.11)

Since the second moment V is bounded (A.1), we have that
∣∣∣∣
∫ T

0

∫
b · ∇cεnεdx

∣∣∣∣ � C. (A.12)
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Applying estimates (A.4), (A.9) and (A.12) to (A.5), we obtain

∫ T

0

∫
nε |∇cε |2dxdt � C < ∞. (A.13)

This concludes our first step.
Step 2- Passing to the limit. As in [8], the following Aubin–Lions compactness

lemma is applied:

Lemma A.1. (Aubin–Lions lemma)[8] Take T > 0 and 1 < p < ∞. Assume that
( fn)n∈N is a bounded sequence of functions in L p([0, T ]; H) where H is a Banach
space. If ( fn)n is also bounded in L p([0, T ]; V ) where V is compactly imbedded
in H and ∂ fn/∂t ∈ L p([0, T ];W ) uniformly with respect to n ∈ N where H is
imbedded in W, then ( fn)n∈N is relatively compact in L p([0, T ]; H).

Our goal now is to find the appropriate spaces V, H,W for nε . We subdivide the
proof into steps, each step determines one space in the lemma.

Space H : Bound on |nε |L2([0,T ],L2):We can estimate the |nε |22 by applying the
following decomposition trick:

nε = (nε − K )+ + min
{
nε, K

}
. (A.14)

The second part in (A.14) is bounded in L p, 1 � p � ∞. The first part is bounded
in L1 by

|(nε − K )+|1 � |nε log nε |1
log K

= η(K ), (A.15)

which can be made arbitrary small. Now we estimate the time evolution of
∫
(nε −

K )
p
+dx, 1 < p < ∞ as follows:

1

p

d

dt

∫
(nε − K )

p
+dx

=
∫

(nε − K )
p−1
+ (�nε − ∇ · (∇cεnε) − b · ∇nε)dx

= −4(p − 1)

p2

∫
|∇(nε − K )

p/2
+ |2dx −

∫
(nε − K )

p−1
+ ∇ · (∇cεnε)dx

−
∫

(nε − K )
p−1
+ b · ∇(nε − K )+dx

� −4(p − 1)

p2

∫
|∇(nε − K )

p/2
+ |2dx − p − 1

p

∫
(nε − K )

p
+�cεdx

− K
∫

(nε − K )
p−1
+ �cεdx

=: −4(p − 1)

p2

∫
|∇(nε − K )

p/2
+ |2dx + I1 + I2. (A.16)
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Note that since ∇ ·b ≡ 0, the term involving b vanishes. For the T1 term in (A.16),
using the facts that �cε = �K ε ∗ nε and |�K ε |1 is uniformly bounded, we can
estimate it as follows:

I1 �
∫

(nε − K )
p
+|�K ε | ∗ (nε − K )+dx + K

∫
(nε − K )

p
+dx |�K ε |1

� |(nε − K )+|pp+1||�K ε | ∗ (nε − K )+|p+1 + CK
∫

(nε − K )
p
+dx

� C |(nε − K )+|p+1
p+1 + CK |(nε − K )+|pp. (A.17)

Similarly, we can estimate the T2 term in (A.16) as follows:

I2 � CK |(nε − K )+|pp + CK 2|(nε − K )+|p−1
p−1. (A.18)

Combining (A.16), (A.17) and (A.18), we obtain

1

p

d

dt

∫
(nε − K )

p
+dx � −4(p − 1)

p2

∫
|∇(nε − K )

p/2
+ |2dx

+ C |(nε − K )+|p+1
p+1 + CK |(nε − K )+|pp + CK 2|(nε − K )+|p−1

p−1.

(A.19)

For the highest order term C |(nε − K )+|p+1
p+1 in (A.19), we use the following

Gagliardo-Nirenberg-Sobolev inequality:
∫
R2

f p+1dx � C
∫
R2

|∇( f p/2)|2dx
∫
R2

f dx, f � 0, (A.20)

together with (A.15), to estimate it as follows:

|(nε − K )+|p+1
p+1 � C |∇

(
(nε − K )

p/2
+
)

|22|(nε − K )+|1
� Cη(K )|∇

(
(nε − K )

p/2
+
)

|22. (A.21)

We can take K big such that it is absorbed by the negative dissipation term in (A.19).
Now applying Hölder’s inequality, Young’s inequality and the Gronwall inequality
to (A.19), we have that

|(nε − K )+|L p (t) � C(T ) < ∞, t ∈ [0, T ], p ∈ (1,∞).

Applying a standard argument, see e.g. [7] proof of Proposition 3.3, we obtain the
estimate

|nε |L∞([0,T ];L p) � C(T ), p ∈ (1,∞). (A.22)

In particular, we set p = 2 and obtain that

|nε |L2([0,T ];L2) � C(T ). (A.23)

We conclude this step by setting H := L2(R2).
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Space V : Bound on |∇nε |L2([0,T ]×R2): First we calculate the time evolution
of the quantity |nε |22:
d

dt

∫
|nε |2dx = − 2

∫
|∇nε |2dx + 2

∫
∇nε · ∇cεnεdx −

∫
∇ · (b(nε)2)dx

= − 2
∫

|∇nε |2dx + 2
∫

∇nε · ∇cεnεdx .

Now, integrating in time, we obtain the estimate
∫

|nε |2dx(T ) −
∫

|nε |2dx(0)

= −2
∫ T

0

∫
|∇nε |2dxdt + 2

∫ T

0

∫
nε(∇nε · ∇cε)dxdt

� −2
∫ T

0

∫
|∇nε |2dxdt

+ 2

(∫ T

0

∫
|nε∇cε |2dxdt

)1/2 (∫ T

0

∫
|∇nε |2dxdt

)1/2

. (A.24)

The terms on the left hand side of (A.24) are bounded due to (A.22). For the last
term on the right hand side, we can estimate it as follows. The Hardy–Littlewood–
Sobolev inequality yields

|∇cε |4 � C |nε |4/3, (A.25)

which implies

|nε∇cε |2 � |nε |4|∇cε |4 � C |nε |4|nε |4/3.
Combining this and the L p bound (A.22) yields the boundedness of nε∇cε in
L∞([0, T ], L2). Applying this fact and (A.22) in (A.24) and set X = (

∫ T
0

∫
|∇nε |2dxdt)1/2, we obtain

X2 − 2|nε∇cε |L2((0,T )×R2)X �
∫

|nε |2dx(T ) −
∫

|nε |2dx(0) � C.

As a result,
|∇nε |L2([0,T ]×R2) � C. (A.26)

Same as in [8], we set V := H1(R2) ∩ {n||x |n2 ∈ L1}, which is shown to be
compactly imbedded in H there. Thanks to the bound (A.23), (A.26) and the (A.1),
we have that nε ∈ L2([0, T ]; V ).

SpaceW :Bound for the ∂t nε: In order to estimate the L2([0, T ]; H−1)normof
the function ∂t nε , we first need to get a bound on the fourth moment of the solution
V4 := ∫

n(x41 + x42 )dx . The time evolution of V4 can be formally estimated as
follows:
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d

dt
V4 =

∫
(�n − ∇ · (∇cn) − b∇n)(x41 + x42 )dx

= 12
∫

n|x |2dx

− 1

4π

∫∫
4(x31 − y31)(x1 − y1) + 4(x32 − y32)(x2 − y2)

|x − y|2 n(x)n(y)dxdy

+
∫

bn · (4x31 , 4x
3
2)dx

� C(M)

∫
n|x |2dx + C

∫
n(x41 + x42)dx . (A.27)

Combining the second moment estimate (A.1) and the Gronwall inequality, we
have that ∫

n(x, t)|x |4dx � C, t ∈ [0, T ]. (A.28)

One can adapt this calculation to the regularized solution nε withoutmuch difficulty.
We leave the details to the interested reader.

Now we can estimate the L2([0, T ]; H−1) norm of the ∂t nε . Combining the
L p bound on nε (A.22), the bound on ∇c (A.25) and the fourth moment control
(A.28) and testing the equation (2.3) with f ∈ L2([0, T ], H1(R2)), we have

〈∂t nε, f 〉L2([0,T ]×R2) � |∇nε |L2([0,T ];L2)| f |L2([0,T ];H1)

+ |∇cεnε |L2([0,T ];L2)| f |L2([0,T ];H1)

+ |bnε |L2([0,T ];L2)| f |L2([0,T ];H1)

� |∇nε |L2([0,T ];L2)| f |L2([0,T ];H1)

+ T 1/2|∇cε |L∞([0,T ];L4)|nε |L∞([0,T ];L4)| f |L2([0,T ];H1)

+ CT 1/2 sup
t

V 1/4
4 |nε |3/4

L∞([0,T ];L3)
| f |L2([0,T ];H1)

� C | f |L2([0,T ];H1).

As a result, we have that ∂t nε is uniformly bounded in L2([0, T ]; H−1).
Combining the results from all the steps above and the Aubin–Lions lemma, we

have that (nε)ε is precompact in L2([0, T ]; L2).We denote n as the limit of one con-
verging subsequence (nεk )εk . Moreover, combining (A.25) and the L4/3([0, T ] ×
R
2) bound on nε which can be derived from (A.22), we have that nεk∇cεk converge

to n∇c in distribution sense.
Step 3- Free energy estimates. By the convexity of the functional n → ∫

R2 |∇√
n|2dx , the fact that nεk∇cεk converge to n∇c in distribution sense and weak

semi-continuity, we have
∫∫

[0,T ]×R2
|∇√

n|2dxdt � lim inf
k→∞

∫∫
[0,T ]×R2

|∇√
nεk |2dxdt,

∫∫
[0,T ]×R2

n|∇c|2dxdt � lim inf
k→∞

∫∫
[0,T ]×R2

nεk |∇cεk |2dxdt.
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Moreover, it can be checked that S[nε](t) → S[n](t) for almost every t, whose
proof is similar to the one used in [7] Lemma 4.6.

Next we show the free energy estimate (1.5) using the strong convergence of
{nεk } in L2([0, T ]×R

2). The key is to show the following entropy dissipation term
is lower semi-continuous for the sequence (nεk ):

∫ T

0

∫
nεk |∇ log nεk − ∇cεk − b|2dxdt

= 4
∫∫

[0,T ]×R2
|∇√

nεk |2dxdt +
∫∫

[0,T ]×R2
nεk |∇cεk |2dxdt

+
∫∫

[0,T ]×R2
nεk |b|2dxdt

− 2
∫∫

[0,T ]×R2
(nεk )2dxdt − 2

∫∫
[0,T ]×R2

nεkb · ∇cεkdxdt

=: I1 + I2 + I3 + I4 + I5. (A.29)

For the sake of simplicity, later we use nε to denote nεk .
First, we estimate the I3 term in (A.29). By the Fatou Lemma, we have the

inequality
∫∫

[0,T ]×R2
n|b|2dxdt � lim inf

εk→0

∫∫
[0,T ]×R2

nεk |b|2dxdt. (A.30)

This finishes the treatment of I3.
Next, we show that the term I5 in (A.29) actually converges as εk → 0. We

decompose the difference between I5 and its formal limit into two parts:

∣∣∣∣
∫ T

0

∫
R2

b · ∇cn − b · ∇cεnεdxdt

∣∣∣∣
�
∫ T

0

∫
R2

|∇c · bn − ∇cε · bn + nb · ∇cε − b · ∇cεnε |dxdt

�
∫ T

0

∫
R2

|∇c − ∇cε | · |bn|dxdt +
∫ T

0

∫
R2

|bn − bnε | · |∇cε |dxdt
=: I51 + I52. (A.31)

For thefirst termT51 in (A.31), applyingHölder andHardy–Littlewood–Sobolev
inequality, we can estimate it as follows:

I51 �
(∫ T

0
|∇(c − cε)|44dt

)1/4(∫ T

0

∫
R2

|b√n|2dxdt
)1/2

(∫ T

0

∫
R2

√
n
4
dxdt

)1/4

� C

(∫ T

0
|n − nε |44/3dt

)1/4(∫ T

0

∫
R2

|x |2ndxdt
)1/2
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(∫ T

0

∫
R2

n2dxdt

)1/4

� C

(∫ T

0
|n − nε |22 |n − nε |21dt

)1/4(∫ T

0

∫
R2

|x |2ndxdt
)1/2

(∫ T

0

∫
R2

n2dxdt

)1/4

� C

(∫ T

0
|n − nε |22dt

)1/4

sup
t

|n − nε |1/21

(∫ T

0

∫
R2

n|x |2dxdt
)1/2

(∫ T

0

∫
R2

n2dxdt

)1/4

.

From the L2([0, T ]×R
2) strong convergence of (nε)ε , we have that the first factor

goes to zero. Other factors are bounded due to (A.1), Fatou’s Lemma, L1 bound
on nε, n and n ∈ L2([0, T ] × R

2). As a result, T51 converges to zero. Next we
estimate the I52 term in (A.31). Applying the fact that |√|c| − √|a|| �

√|c − a|,
the Hölder and Hardy–Littlewood–Sobolev inequality, we have

I52 =
∫ T

0

∫
R2

|b(
√
n
2 − √

nε
2
)| · |∇cε |dxdt

�
∫ T

0

∫
R2

|b√
n(

√
n − √

nε)| · |∇cε |dxdt

+
∫ T

0

∫
R2

|b√
nε(

√
n − √

nε)| · |∇cε |dxdt

�|∇cε |L4([0,T ]×R2)|b
√
n|L2([0,T ]×R2)

(∫ T

0

∫
R2

√|n − nε |4dxdt
)1/4

+ |∇cε |L4([0,T ]×R2)|b
√
nε |L2([0,T ]×R2)(

∫ T

0

∫
R2

√|n − nε |4dxdt)1/4

�C sup
t

|nε |L1(R2)
1/2|nε |1/2

L2([0,T ]×R2)

(∫ T

0

∫
(nε + n)|x |2dxdt

)1/2

|n − nε |1/2
L2([0,T ]×R2)

.

By the same reasoning as in T51, we have that this term goes to zero. This finishes
the treatment for the term.

Now for the I1, I2, I4 terms in (A.29), we can handle them in the same way as
in [7]. Combining all the estimates above we have that

∫ T

0

∫
n|∇ log n−∇c−b|2dxdt � lim inf

εk→0

∫ T

0

∫
nεk |∇ log nεk −∇cεk −b|2dxdt.

(A.32)
The remaining part of the proof is the same as the one in [7]. �	
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Appendix A.2. Proof of Proposition 2.2

The proof of the proposition follows along the lines of [8].
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